

# **Graph Macro Dynamics with**

## **Self-Attention for Event Detection**

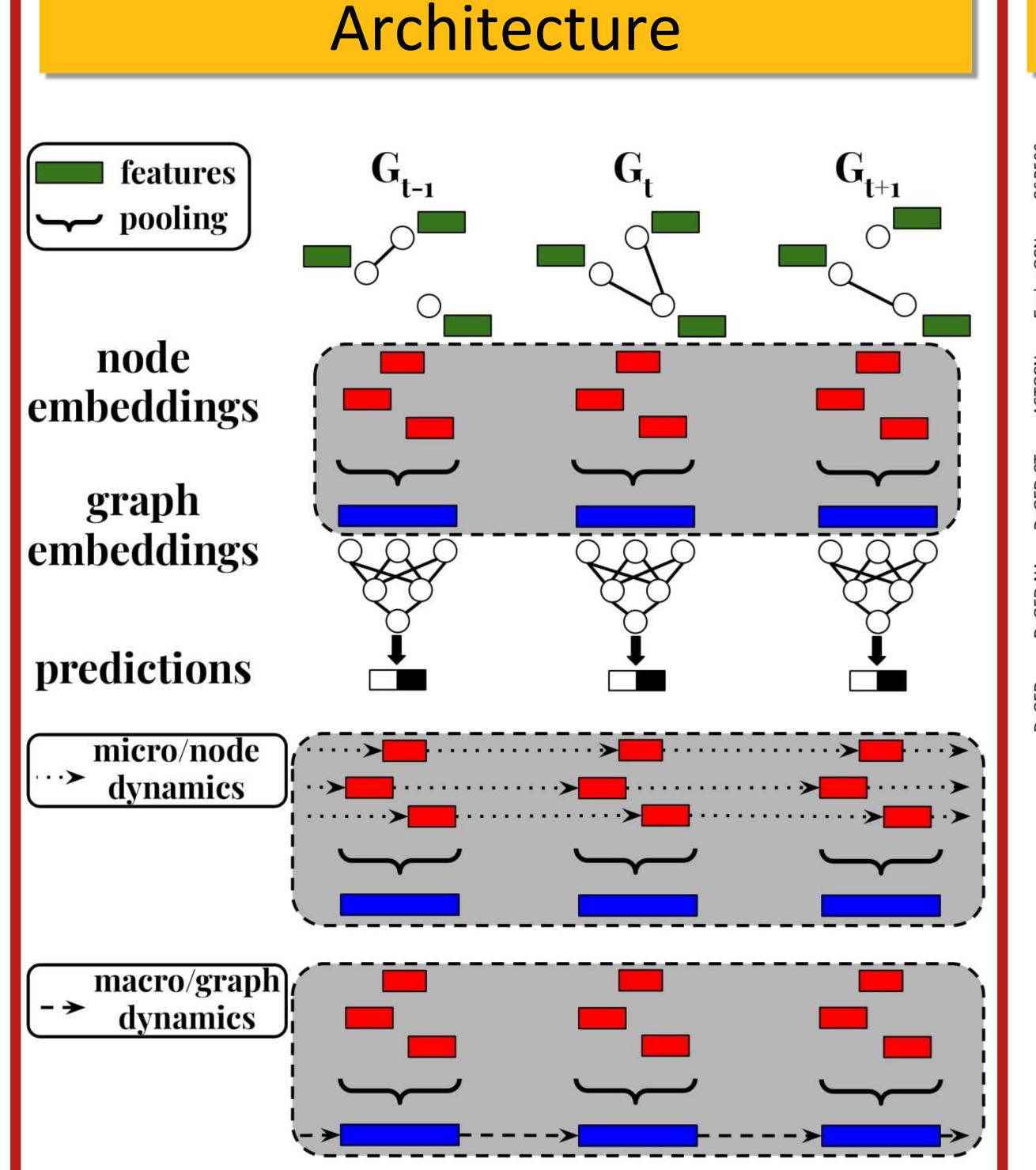
Mert Kosan<sup>1</sup>, Arlei Silva<sup>2</sup>, Sourav Medya<sup>3</sup>, Brian Uzzi<sup>4</sup>, Ambuj Singh<sup>1</sup>

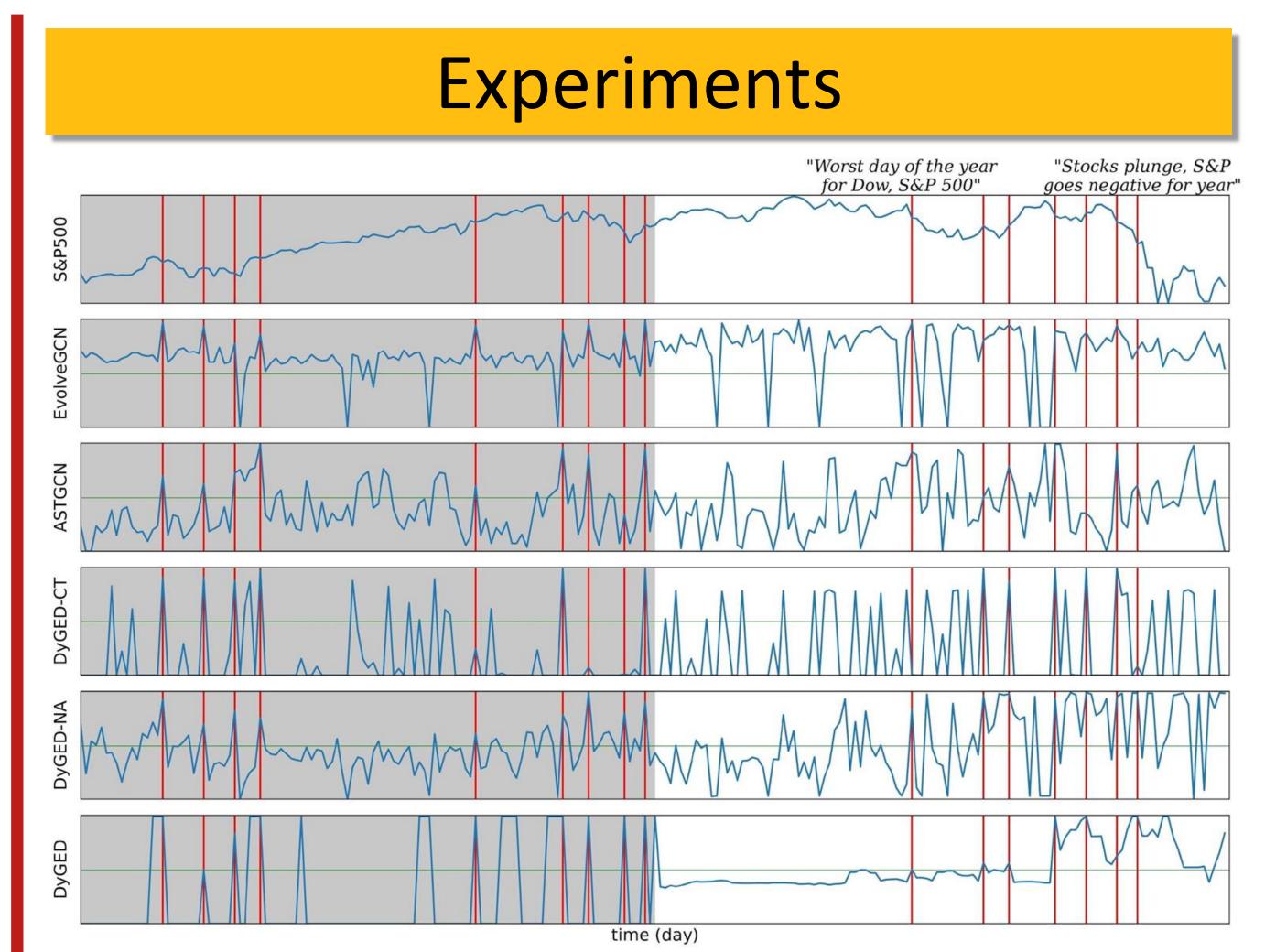
<sup>1</sup>University of California, Santa Barbara <sup>2</sup>Rice University <sup>3</sup>University of Illinois Chicago <sup>4</sup>Northwestern University



#### Abstract

We propose DyGED, which learns correlations between the graph macro dynamics (i.e., a sequence of graph-level representations) and labeled events. Our approach combines structural and temporal self-attention to account for application-specific node and time importances effectively.



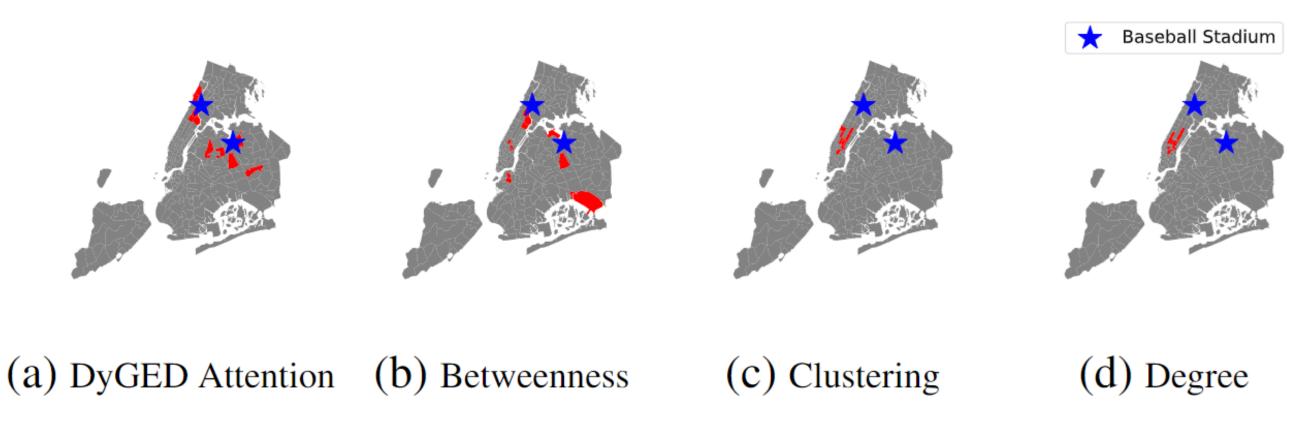


## Contributions

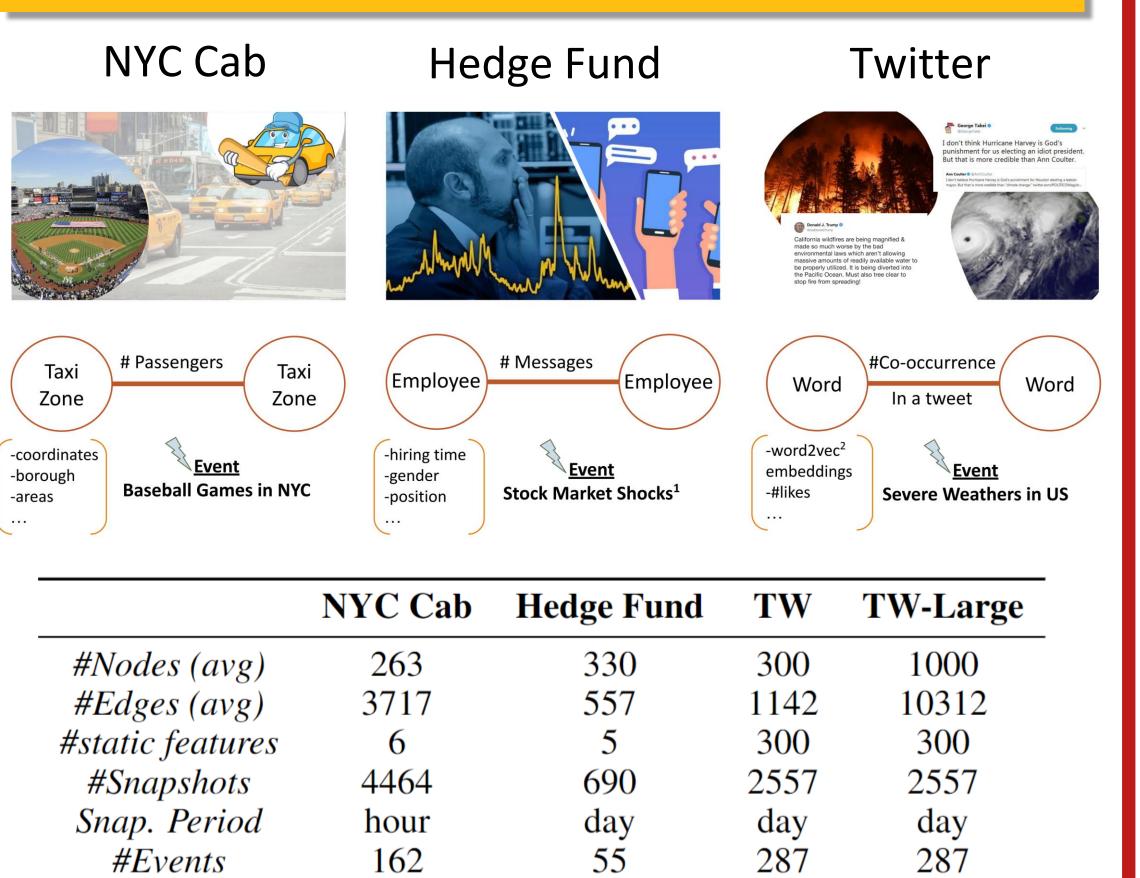
- First study comparing micro and macro architectures for event detection.
- Structural and temporal self-attention enables the effective learning of node and time dependent weights.
- Comparison against several baselines using three datasets, outperforming them by up to 8.5% while being scalable.

Figure: (a) Event detection on dynamic graphs based on a deep learning architecture. (b) At the micro scale, the dynamics is captured at the node-level. (c) At the macro scale, the dynamics is captured at the graph level.

Figure: Scaled prediction by event detection methods for Hedge Fund. Events are marked as vertical (red) lines. DyGED identifies several of the events while keeping the false positive rate lower.



### **External Events**



### **DyGED** Algorithm

**Require:** Sequence of snapshots  $G_{t-k:t}$ , previous dynamic state  $z'_{t-k-1}$ **Ensure:** Event probability 1: for  $\tau \in \{t - k, ..., t\}$  do  $Z_{\tau} \leftarrow GCN(G_{\tau}, X_{\tau})$  $z_{\tau} \leftarrow \text{v-Att}(Z_{\tau})$  $z'_{\tau} \leftarrow LSTM(z'_{\tau-1}, z_{\tau})$ 5: end for 6:  $z_t'' \leftarrow \text{t-Att}([z_{t-k}'; \ldots; z_t'])$ 7: return  $MLP(z_t'')$ 

#### Self-attention mechanism [3]

 $v-Att(Z_t) = \mathbf{softmax}(\mathbf{w}.\mathbf{tanh}(\Phi Z_t^T))Z_t$ t-Att $(Z'_t) = \mathbf{softmax}(\mathbf{w}'.\mathbf{tanh}(\Phi'Z'_t))Z'_t$  Figure: Top 10 taxi zones (in red) based on various metrics for NYC Cab dataset. DyGED Attention mechanism finds closer taxi zones to the stadiums compared to some node statistics.

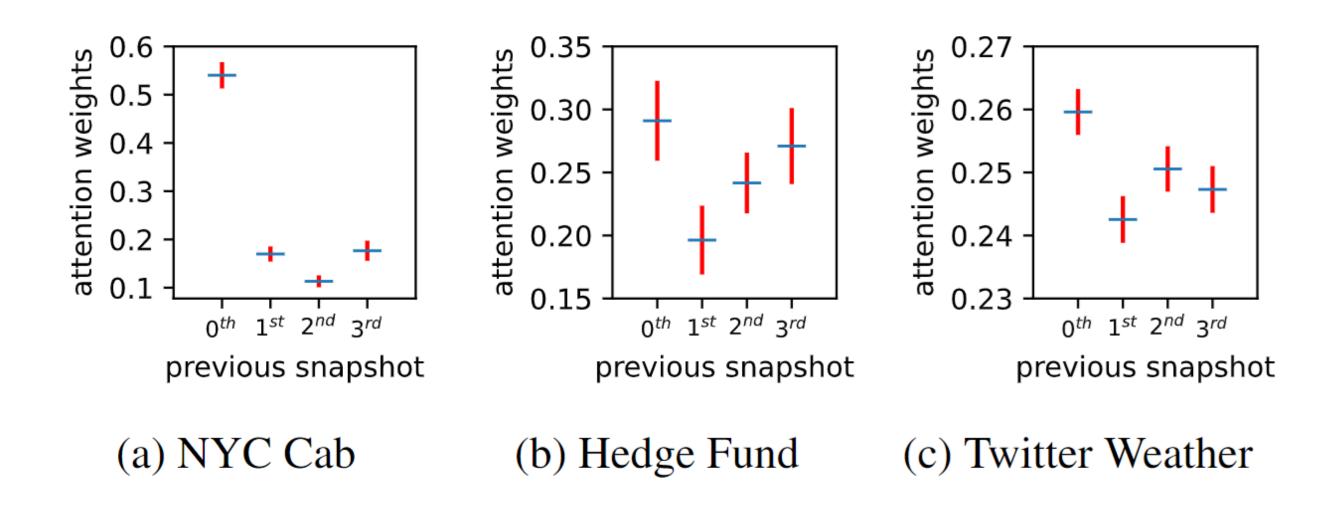


Figure: Illustration of the normalized attention weights of current (Oth) and previous three snapshots for all datasets. Results show the history plays a role in predicting the event.

#### **References:**

[1] Daniel M. Romero, Brian Uzzi, Jon Kleinberg. Social Networks Under Stress. Web Conference 2016

#### [2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. NeurIPS 2013

#### [3] Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; and Huang, J. 2019. Semi-supervised graph classification: A hierarchical graph perspective. In The Web Conference, 972–982.

