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Abstract
Making precise decisions for high-stakes applications such as finance, health, and self-driving is critical
for increasing the economy of an entity or the quality of life. In most scenarios, decision quickness is
also as essential as accuracy. This is particularly true in the case of event detection problems, where
late detection can cause financial or physical damage. While recent work focuses on combining fast
unsupervised AI decision systems and precise human decisions to solve this problem, the quality of
this cooperation remains questionable. A human can generate ground-truth labels for the AI decision
systems for future improvements. However, having noisy ground truth can worsen the performance.
To address this challenge, this paper proposes FLAL (Feedback Loop Active Learner), a novel bridge
system between the AI decision system and human/s, designed to understand human expertise and
interest using a recommender mechanism and improve AI system performance using an active learning
mechanism. FLAL is able to identify human behavior and makes entity recommendations to users who
can generate better ground-truth labels for these entities. Our experiments show that FLAL performs
better than competing baselines and converges fast.
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1. Introduction

Accuracy is one of the critical evaluation metrics in decision systems, especially for high-stake
applications [1, 2] such as financial event detection [3], drug discovery [4], and autonomous
driving [5]. Making the decision systems controlled by AI is risky because of the gray area
problem [6], where AI cannot decide the actual answer and uses an artificial and pre-defined
threshold. On the other hand, human decision systems are time-consuming and require an
expert [7]. It leads us to the following question: Can we improve AI decision systems with the
help of human expertise?

Certain high-stakes decisions, such as detecting anomalies in operating server machines
wherein missing them would cause financial loss, can be easily given by AI decision systems. In
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Figure 1: A short illustration of Feedback Loop Active Learner. It starts with multiple entities at which
a black box AI system generates decisions. FLAL uses these decisions and entities to send queries to a
human, who evaluates them and generates ground truth labels and feedback. FLAL uses this feedback
(including human interest and expertise) in active learning training and stores the ground truth labels
for future updates in the AI decision system.

order to make such decisions, AI Decision systems are created using either historical experience
(previous anomaly patterns, i.e., learned features) or algorithmic design (certain behaviors
are anomalies, i.e., expert-designed features). However, historical experiences are not always
available because of the label scarcity problem in AI for high-stakes applications. Therefore, the
anomaly decision systems generally are designed as unsupervised classification models, which
affects generalizability and generates multiple misclassifications. A human decision maker may
solve this problem. However, human decision making is very time-consuming and not ideal
where a fast decision is necessary. For instance, if a server machine fails, AI could detect this
quickly compared to a human however human expertise is needed to check and confirm the
detection as well as understand its root cause. In such a context, the human required should be
an expert in understanding the problem. This scenario is not limited to high-stakes decisions.
Credit card approval systems or insurance acceptance systems are other examples that AI may
need the help of human decisions.

Feedback loop (Human-in-the-loop) systems have been studied [8] to create a bridge between
AI and humans. They collect labels from the users and improve the AI decision systems. However,
can we trust the user’s expertise? Even if they are experts, how do we confirm their interest
in asked queries? Recommender systems have been proposed to learn the interest of people
[9, 10, 11]. The system ranks unseen/unused items and recommends them to the user based on
their historical interest or using user interactions [12]. While collecting ground-truth labels, the
selection of humans to answer particular queries is critical to improving label correctness and
quality. Combining the recommender mechanism with a feedback loop system could potentially
increase the performance of AI decision systems by having plenty and correct ground-truth
labels.

In this paper, we are looking at specific scenarios of multiple independent entities. Each
entity has temporal multidimensional features, and the AI system makes a decision for each
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entity and time (e.g., anomaly/failure decision). Entities will be ranked by their relevance score
to the humans and queried to them to learn their expertise and interests with a pre-defined
budget. It helps the framework generate accurate ground-truth labels and labeling operation
will not be challenging or boring for a human since they are interested in answering.

We propose FLAL–a novel Feedback Loop Active Learner for better ground-truth labeling–
which aims to learn the expertise and interest of a human before querying the entities to them
using the active learning mechanism. Figure 1 illustrates a summary of FLAL bridging between
an AI decision system and a human. FLAL collects decision for entities from the AI system,
ranks entities based on their relevance score to human/s, and send queries based on the budget.
The human/s answers these queries and sends them back to a FLAL, which learns their behavior
towards these entities as well as stores the answers as ground truths. These ground truths
will be used to improve AI decision systems in the future. Our main contributions can be
summarized as follows:

• We highlight the limitation of current AI decision systems, human decisions, and their
cooperation to generate data labels. AI decision system makes many mistakes, human
decisions are slow, and cooperation may be limited because of the lack of expertise or
interest from humans.

• We propose FLAL, a novel feedback loop active learning framework, for better ground-
truth generation and understanding of human behavior. It uses active learning to train
the framework based on human feedback and stores generated data labels to improve AI
decision systems in the future.

• We conduct experiments to verify the effectiveness of FLAL. We show that our framework
performs better than competing baselines: random forest active learner, AI decision-
based, and random recommendations. FLAL not only has the best performance but also
converges fast.

2. Related Works

Human-in-the-Loop
Human-in-the-loop, in other words, feedback-loop, mechanisms are studied in the literature to

enhance AI performance by label annotation [13, 14] and generating explanations [15, 16, 17, 18]
to black-box operations. Since feedback-loop systems are generally real-time systems, they
often use active learning during their training [19, 20, 13]. In our work, we also adapt similar
ideas by incorporating human decisions into AI. However, our method increases the efficiency of
this cooperation by learning the expertise and interest of humans before asking them questions.
Recommenders

Recommendation systems are one of the solutions for understanding the behavior of indi-
viduals. They are designed to infer interests and recommend items to humans based on their
historical experience or user interactions [12]. The main idea is to rank all relevant items
to the user and recommend the top ones. Therefore, ranking algorithms become one of the
main components [21, 22, 23] in designing recommendation systems. Recently, as opposed to
classical recommenders such as collaborative filtering and matrix factorization, deep-learning
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frameworks are applied to learn a better representation of items [10, 24, 25]. However, a lack of
data availability can restrict the number of parameters to be learned. Even though we still use
the advantage of deep learning recommenders, we keep our framework simple but effective.
Our recommender system finds better queries based on the user’s expertise and interests. In
this way, the feedback loop will generate better ground truth labels.
Temporal Embeddings

Representation learning on time-series data has become a popular technique to reduce the
dimension of the temporal data while keeping the representation (meaning) of it intact [26, 27].
Time2Vec [28] uses a sine activation function to embed the time-series data. Unsupervised
time-series embedders have been proposed [29, 30] to deal with label scarcity. Franceschi et
al. [29] use the triplet loss function to learn a representation of multidimensional time-series
data. The trained embedder can embed any time-series data with any length. More recently,
Zerveas et al. [30] propose a transformer-based framework by reconstructing the mask part of
the time-series data. FLAL uses a pre-trained temporal data embedder to represent time-series
data coming from the entities for better and more compact representations.

3. Methodology

3.1. Problem Formulation

We formulate our problem as a self-supervised time-series classification. Given an entity set
ℰ = {𝐸1, 𝐸2, . . . , 𝐸𝑛} where each entity represents a multivariate time-series data (i.e., 𝐸𝑖 =
[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑡]), an unsupervised AI decision system 𝒟 which generates decision probability
𝑑𝑖𝑡 for each entity and timestamp (i.e, 𝒟(𝐸𝑖𝑡) = 𝑑𝑖𝑡), a user set 𝒰 = {𝑈1, 𝑈2, . . . , 𝑈𝑚}, and
interest labels 𝒴 ∈ {0, 1}𝑚×𝑛×𝑡 for each user to certain timestamp and entity; our goal is to
learn a function �̂� : ℰ ,𝒟 → 𝒴 that approximates the expertise of users.

3.2. FLAL: Feedback Loop Active Learner

We introduce FLAL, a feedback loop active learner that generates ground-truth labels for the AI
decision system while learning human expertise and/or interest. FLAL performs user mapping
and feature extraction that optimizes the human expert’s predictions. As a result, it obtains
better ground-truth labels for the AI decision system.

Figure 2 describes the steps of FLAL in detail. FLAL finds a global embedding space using
pre-trained time-series embedders and translates the global embedding space into personalized
embedding space. To overcome the cold-start problem, FLAL extracts features from user
embedding space and incorporates AI decisions into this feature set. Finally, it calculates
relevance scores for each entity and sends the top 𝑄 to human experts for evaluation. The
human classifies each query which in turn generates ground truth information and adds feedback
(explicit or implicit) about their expertise or interest in a certain query. FLAL trains its framework
using this feedback via an active learning mechanism and stores the ground truth information
to improve AI decision systems in the future when necessary.
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Figure 2: Feedback Loop Active Learner steps. (1) It starts with embedding stream data using pre-trained
embedders. (2) User embedding mapper maps the embedding space into a more personalized space.
(3) Feature extractor generates learned or expert-designed features to tackle the cold-start problem for
recommenders. (4) Generates relevance scores based on AI decision system and extracted features. It
sends queries to users for ground truth generation. (5) User generates ground truths and relevancy of
the query. They send them back to the framework. Later, FLAL updates its components using an active
learning mechanism and keeps ground truth information for future updates on the AI decision system.
Notice that the user’s interest (relevancy) in queries can also be inferred using interaction detectors.

3.2.1. Stream Data Embedder

To increase the expressiveness and compactness of our data, we use an unsupervised multivariate
time-series embedder to represent the entity’s time series. This part of our algorithm is pre-
trained with the data, which is not used in our experiments. We used [29] for our stream
data embedder since it is more flexible to different time-series lengths and generates good
representations for anomaly data compared to [30]. During the embedding of the time-series
data, we consider the last 𝜏 timestamps.

ℎ𝑖𝑡 = 𝑆([𝑥𝑖(𝑡−𝜏); . . . ;𝑥𝑖𝑡]) (1)

where ℎ𝑖𝑡 is an embedding of 𝐸𝑖𝑡, 𝑆 is an unsupervised multivariate time-series embedder,
𝑥𝑖𝑡 is multivariate time-series data for 𝐸𝑖𝑡, and [·; ·] is the row concatenation operator.

3.2.2. User Embedding Mapper

Global embedding space may not be as representative as user embedding space, where one can
understand the expertise of users. Therefore, we have a user embedding mapper that maps
generated embeddings from the stream data embedder to the user embedding space. This
allows them to distinguish between relevant and irrelevant entities to the user. Figure 4 shows
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Figure 3: An illustration of Stream Data Embedder. The pre-trained unsupervised embedder takes input
from all entities’ time series data (up to 𝜏 timestamp history) and embeds them into 𝑑 dimensional
space. This allows a better and more compact representation of time-series data.

Figure 4: The usefulness example of user embedding mapper. Since the global embedding space will
group related entities together and a specific user may be interested in different types of entities, the
user embedding mapper will learn how to regroup entities. This example shows that the algorithm may
detect the anomalies for different reasons: data issues, seasonal change, and authentication-related.
Therefore, if only data issues and authentication-related anomalies (red entities) are relevant to the user,
the algorithm groups them together to make the embedding space personalized.

an example of the usefulness of user embedding mapper. For an anomaly detection problem,
multiple reasons can cause an anomaly. But the users are often experts on a certain subset
of those anomalies and the user embedding mapper will map these types close to each other.
As a result, they can be separated from the other anomaly types or normal ones. The user
embeddings are generated as follows:

ℎ𝐴𝑖𝑡 = 𝑔𝐴(ℎ𝑖𝑡) (2)

where ℎ𝐴𝑖𝑡 is a user embedding for User A, and 𝑔 is the user embedding mapper. 𝑔 can be
designed as any function, such as the identity or neural networks.
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3.2.3. Feature Extractor

Since we do not know any information about the users and cannot conduct an initial survey as
most recommenders do, we need to extract features from the user embedding space. Features
can be learned or designed for a specific application scenario. An example of an expert-designed
feature for anomaly applications can be the average distance from one item to others, which
will likely be higher for anomaly cases. However, learned features are shown as more expressive
than expert-designed features because it is hard to design or engineer all useful features. Feature
extractor can also be seen as a function layer on top of the user embedding mapper. So it will
learn new features from ℎ𝐴𝑖𝑡 :

ℎ′𝐴𝑖𝑡 = 𝑓(ℎ𝐴𝑖𝑡) (3)

where ℎ′ has smaller dimension than ℎ, and 𝑓 is a feature extractor function. 𝑓 can also
represent a set of learned and expert-designed functions. In that case, ℎ′ will be a concatenation
of extracted features.

3.2.4. Recommender

In order to find better queries for specific users, we calculate each entity’s relevance score to a
user. Note that the AI decision system 𝐷 already calculates decision probability 𝑑𝑖𝑡 for entity
𝑖. Even though this probability may not be fully correct, we can incorporate it into relevance
score calculation to ease the cold-start problem. Furthermore, we will also use the extracted
features from the feature extractor. The relevance score of 𝐸𝑖𝑡 for a user 𝐴 calculation will be
as the following:

𝑟𝐴𝑖𝑡 = 𝑤1 × 𝑑𝑖𝑡 +
∑︁

𝑊 ⊙ ℎ′𝐴𝑖𝑡 (4)

where 𝑤1 and 𝑊 are learned weights. Also, these weights may tell us a story about the
importance of AI decision systems and extracted features for different users. Once relevance
scores are calculated for all entities, the recommender will send the top 𝑄 relevant entities to
the user to get feedback.

3.2.5. User Feedback

The users will have a list of queries to be checked and answered. The user will respond to
each query with two answers: (1) what should be the decision of the AI system? (2) what
is their expertise/interest in this query? The first answer is stored to update the AI decision
system if necessary, while the second is used to train FLAL. Note that our main algorithm is
not controlling the answering part done by the user. If a query has no response, it means no
decision (i.e., do not use to improve the AI decision system) and no expertise (improve FLAL
with the information that the user is not an expert). Furthermore, an interaction system can be
designed to understand the expertise or interest of the user in queries by looking at their click
count or other related metrics. However, this is out of the scope of this project. The expertise
information will be stored in 𝑒𝐴𝑖𝑡 ∈ {0, 1}, and used to update FLAL.
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3.3. Training FLAL

We train our framework based on active learning principles since the problem requires learning
the behavior of users in real-time to collect better ground truth labels for AI decision systems.
The collected ground truth information will be stored to update the AI decision system if
necessary. Our active learning mechanism focuses on updating the recommender using feedback
from expertise information. For each timestamp t, we train our objective which aims to sort
relevance scores of entities, 𝑅𝐴

𝑡 = [𝑟𝐴1𝑡, . . . , 𝑟
𝐴
𝑛𝑡] based on the expertise information array

𝐸𝐴
𝑡 = [𝑒𝐴1𝑡, . . . , 𝑒

𝐴
𝑄𝑡]. More specifically we use a contrastive loss for our active learning training

which contains three different terms as follows:

max𝐿ALL(𝐸
𝐴
𝑡 , 𝑅

𝐴
𝑡 ) = 𝑥1 *

∑︁
𝑖<𝑄
𝑒𝐴𝑖𝑡=1

∑︁
𝑄>𝑗>𝑖
𝑒𝐴𝑗𝑡=0

𝜎(𝑟𝐴𝑖𝑡 − 𝑟𝐴𝑗𝑡) → 𝐿WIDEN

+ 𝑥2 *
∑︁
𝑖<𝑄
𝑒𝐴𝑖𝑡=1

∑︁
𝑄>𝑗>𝑖
𝑒𝐴𝑗𝑡=0

𝜎(𝑟𝐴𝑖𝑡 − 𝑟𝐴𝑗𝑡) → 𝐿NARROW

+ 𝑥3 *
∑︁
𝑗<𝑄
𝑒𝐴𝑖𝑡=1

∑︁
𝑘>=𝑄

𝜎(𝑟𝐴𝑘𝑡 − 𝑟𝐴𝑗𝑡) → 𝐿RECOVER

where 𝐿WIDEN widens the gap between correctly ranked positive and negative samples,
𝐿NARROW narrows the gap between wrongly ranked positive and negative samples, and
𝐿RECOVERY recovers unrecommended by narrowing the gap between wrongly-recommended
samples and unrecommended samples (which may contain useful recommendations). We use
𝑥1,2,3 as a tunable hyperparameter to value each term respectively. They can be optimized
based on the scenario and the need of an application.

3.3.1. Example scenario for our training

Let 𝑅𝐴
𝑡 = [1.5, 1.2, 1.1, 0.9, 0.3, 0.2], 𝑄 = 4, 𝐸𝐴

𝑡 = [1, 0, 0, 1, ?, ?], 𝑥1 = 0.50, 𝑥2 = 0.75,
and 𝑥3 = 0.25, then our objective will be calculated as follows:

𝐿ALL(𝐸
𝐴
𝑡 , 𝑅

𝐴
𝑡 ) = 0.50 * (𝜎(1.5− 1.2) + 𝜎(1.5− 1.1)) → 𝐿WIDEN

+ 0.75 * (𝜎(0.9− 1.2) + 𝜎(0.9− 1.1)) → 𝐿NARROW

+ 0.25 * (𝜎(0.3− 1.2) + 𝜎(0.2− 1.2) +

𝜎(0.3− 1.1) + 𝜎(0.2− 1.1)) → 𝐿RECOVER
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Figure 5: The example scenario of the user simulation. The user space will be randomly assigned in
the embedding space. The entities inside of this space will be relevant to the user. So user embedding
mapper should learn how to map relevant items to this space based on the answers by the user. This
will allow better ground truth generation by the user.

3.4. User Simulation

To see the effectiveness of our feedback-loop part, we need to simulate the user answers. One
way to do this is by using ground truth information for the AI decision system if it is available
(simulating that the user’s expertise/interest is the ground truth). We apply this strategy in this
paper. However, this would allow only one user available in the system. To extend the number
of users to more than one, we propose a new way of simulating users. Each user is represented
as a Gaussian latent space in the entity embedding space. The user space is assigned randomly.
If a query entity is in this space, the user is considered an expert. The user embedding mapper
will map related entities into this space. Figure 5 shows the mapping example.

4. Experiments

We illustrate the empirical verification of FLAL compared to three baselines on a dataset. First,
we compare method performance with precision at Section 4.3. Later on, we conduct two
ablation studies: the effect of user embedding mapper (Section 4.4) and objective function
weights (Section 4.5).

4.1. Dataset

We use a public Server Machine [31] dataset for our experiments. The dataset contains 38
time-series data with various lengths. For our purpose, we chucked the data into 100 time series
(entities) with a length of 365. Each time series consists of 38 different features. At any point in
the time series, machine activity is classified as normal or failure. Failure represents an anomaly.

4.2. Experimental Settings

4.2.1. Baselines

We used three baselines to compare our method.
Random: It makes random recommendations in the recommender step to the user.
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AI System Decisions: It only uses AI decision system probability to recommend entities to
the user.
Random Forest Active Learner: It combines uncertainty and confidence scores for each

entity and recommends them to the user. The model is trained using active learning with a
random forest as the estimator and the same settings as FLAL.

4.2.2. Other Settings

Model selection: We select user embedding mapper as a linear layer as a result of ablation
study (See Section 4.4), feature extractor generates 15 learned features with linear layer, and
recommender is also a linear layer to generate a relevance score for an entity. To simulate user
feedback, we use the ground truth information of the dataset.
Hyperparameters: We tune hyperparameters of FLAL using grid search. We optimize our
model using Adam optimizer with a learning rate of 0.0001, L2 normalization weight on model
weights 0.001. We select loss function weights 𝑥1, 𝑥2, and 𝑥3 from {0.0, 0.5, 1.0} (See Section
4.5). In our experiments, 𝜏 is set to 127 (the length of the multivariate time series data becomes
128 with the current snapshot) and the embedding size 𝑑 is 128. We set 𝑄 to 10 and 20 for
different runs. The number of recommended items is also set to Q.
Evaluation metrics: Since the real evaluation can only consider feedback from the recom-
mended entities, we compare precision metrics in our experiments. At each round, we calculate
precision@Q and average precision@Q.

4.3. Performance

Figure 6 shows precision@Q and average precision@Q, where Q is 10 and 20. We calculate
a cumulative average of precision performance at each step. Note that this performance will
reflect improved AI decision system performance since we use the user’s interest/expertise
label as a ground truth decision. Our method, Feedback Loop Active Learner, outperforms
the competing baselines at all reported metrics, especially after 10-20 steps. Another essential
requirement of learning human interest is convergence speed. FLAL converges in around 50
steps, faster than the best baseline Random Forest Active Learner.

Notice that the precision performance of the AI Decision System is not enough. However,
active learner mechanisms improve the performance of the decision system drastically, while
random decisions are still worse than the original AI decision system. Another notable
difference between 𝑄 = 10 and 𝑄 = 20 is in precision@Q performance. When 𝑄 = 20, the
performance drops below 0.6. However, this essentially could happen because the number of
anomalies in the data is hardly more than 12 (i.e., 20× 0.6) at a certain time. This shows us that
we should optimize the number of recommended entities based on the number of anomalies
at every step instead of using the same values as the budget of 𝑄. The average precision is
less vulnerable to this issue since the leading zeros do not affect the result. For both 𝑄, the
performance is close to each other.
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Figure 6: Test scores for Precision@Q and AveragePrecision@Q. FLAL outperforms the competing
baselines in both metrics and with different 𝑄 = {10, 20}. FLAL’s performance becomes strictly better
in around 10-20 steps and converges around 50 steps. Another active learning mechanism, Random
Forest Active Learner, also generates better performance compared to the original AI decision system
performance. Random recommendation mechanism expectedly is the worst.

4.4. Different User Embedding Mapper

Figure 7 shows an ablation study on different user embedding mapper layers using precision@10
and precision@20. We compare identity, linear, nonlinear, and nonlinear-2 (2 nonlinear layers).
The identity layer returns the same embedding space and the nonlinear layers use a sigmoid
activation. The result suggests that one linear layer captures enough information as much as
one nonlinear layer. On the other hand, the identity layer has gradually increasing performance
for Precision@10, but with a slower convergence rate. Nonlinear-2 has the worst performance.
The reason could be overfitting since the lack of data points.
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Figure 7: Ablation study of user embedding mapper. The linear and non-linear layers have competing
performances at both metrics. The linear mapping converges slowly, and 2 non-linear layers suffer from
the lack of available data points.
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blocks show an average of precision@10 across all steps of active learning. 𝑥1 is the most effective term
in our loss function as the absence of it generates much worse performance. 𝑥2 and 𝑥3 have similar
effects since they aim to narrow between negative and positive samples.

4.5. Loss Function Term Sensitivity

Figure 8 shows a sensitivity analysis on objective function terms for the Machine dataset.
Each block represents the last step cumulative average of precision@10 scores from FLAL
parameterized by different 𝑥1,2,3 values. All terms contribute to the performance, while the
absence of the first term (i.e., 𝑥1 = 0) makes the model performance very bad. This behavior
is expected since the first term is the core part of the contrastive loss. The second term is not
effective as the first term for the Machine dataset, but still increasing the value of 𝑥2 makes
the performance better. The third term has a similar effect as the second term. They both aim
to narrow the positive and negative sample rankings. The best performance is achieved when
hyperparameters are equal to 1, or 𝑥1 = 1, 𝑥2 = 0.5, and 𝑥3 = 0.5.
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5. Conclusion and Future Works

We investigate better and more effective ground truth generation by incorporating recommen-
dation systems into AI decision systems and human collaboration for entity-based time-series
data. We propose FLAL understanding the expertise and interest of a human over queries to
make feedback more eligible and accurate using active learning. FLAL trains a personalized
embedding mapper; uses features extraction and AI system decisions to solve the cold-start
problem of recommender systems. FLAL performs better than competing baselines: random
forest active learners, AI decision-based, and random recommenders; and it converges fast.
Furthermore, our ablation studies show that the linear user embedding mapper is learning
enough information and each term in the objective function contributes to the result.

In future work, we want to investigate this problem using different datasets and our proposed
user simulation setting. We also desire to conduct human experiments to show the effectiveness
of FLAL in real settings. Furthermore, we will optimize the number of recommendations instead
of using it as the budget 𝑄.
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