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ABSTRACT

Graph neural networks (GNNs) find applications in various domains
such as computational biology, natural language processing, and
computer security. Owing to their popularity, there is an increasing
need to explain GNN predictions since GNNs are black-box machine
learning models. One way to address this is counterfactual reason-
ing where the objective is to change the GNN prediction by minimal
changes in the input graph. Existing methods for counterfactual
explanation of GNNs are limited to instance-specific local reason-
ing. This approach has two major limitations of not being able
to offer global recourse policies and overloading human cognitive
ability with too much information. In this work, we study the global
explainability of GNNs through global counterfactual reasoning.
Specifically, we want to find a small set of representative counter-
factual graphs that explains all input graphs. Towards this goal,
we propose GCFEXPLAINER, a novel algorithm powered by vertex-
reinforced random walks on an edit map of graphs with a greedy
summary. Extensive experiments on real graph datasets show that
the global explanation from GCFEXPLAINER provides important
high-level insights of the model behavior and achieves a 46.9%
gain in recourse coverage and a 9.5% reduction in recourse cost
compared to the state-of-the-art local counterfactual explainers.
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1 INTRODUCTION

Graph Neural Networks (GNNs) [9, 15, 27, 38, 42, 43] are being used
in many domains such as drug discovery [12], chip design [25], com-
binatorial optimization [21], physical simulations [3, 37] and event
prediction [8, 17, 22]. Taking the graph(s) as input, GNNs are trained
to perform various downstream tasks that form the core of many
real-world applications. For example, graph classification has been
applied to predict whether a drug would exhibit the desired chem-
ical activity [12]. Similarly, node prediction is used to predict the
functionality of proteins in protein-protein interaction networks [5]
and categorize users into roles on social networks [45].

Despite the impressive success of GNNs on predictive tasks,
GNNss are black-box machine learning models. It is non-trivial to
explain or reason why a particular prediction is made by a GNN.
Explainability of a prediction model is important to understand its
shortcomings and identify areas for improvement. In addition, the
ability to explain a model is critical towards making it trustworthy.
Owing to this limitation of GNNS, there has been significant efforts
in recent times towards explanation approaches.

Existing work on explaining GNN predictions can be categorized
mainly in two directions: 1) factual reasoning [20, 40, 46, 47], and
2) counterfactual reasoning [1, 2, 19, 36]. Generally speaking, the
methods in the first category aim to find an important subgraph that
correlates most with the underlying GNN prediction. In contrast,
the methods with counterfactual reasoning attempt to identify the
smallest amount of perturbation on the input graph that changes the
GNN’s prediction, for example, removal/addition of edges or nodes.

Compared to factual reasoning, counterfactual explainers have
the additional advantage of providing the means for recourse [39].
For example, in the applications of drug discovery [12, 44], muta-
genicity is an adverse property of a molecule that hampers its poten-
tial to become a marketable drug [13]. In Figure 1, formaldehyde is

[
H—0O0—® ®

®
(a) Formaldehyde

Figure 1: Formaldehyde (a) is classified by a GNN to be an
undesired mutagenic molecule with its important subgraph
found by factual reasoning highlighted in red. Formic acid
(b) is its non-mutagenic counterfactual example obtained
by removing one edge and adding one node and two edges.
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(b) Formic acid
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classified by a GNN to be mutagenic. Factual explainers can attribute
the subgraph containing the carbon-hydrogen bond to the cause of
mutagenicity, while counterfactual explainers provide an effective
way (i.e., a recourse) to turn formaldehyde into formic acid, which
is non-mutagenic, by replacing a hydrogen atom with a hydroxyl.

In this work, we focus on counterfactual explanations. Our work
is based on the observation that existing counterfactual explain-
ers [20, 40, 46, 47] for graphs take a local perspective, generating
counterfactual examples for individual input graphs. However, this
approach has two key limitations:

e Lack of global insights: It is desirable to offer insights that
generalize across a multitude of data graphs. For example, in-
stead of providing formic acid as a counterfactual example to
formaldehyde, we can summarize global recourse rules such as
“Given any molecule with a carbonyl group (carbon-oxygen double
bond), it needs a hydroxy to be non-mutagenic”. This focus on
global counterfactual explanation promises to provide higher-
level insights that are complementary to those obtained from
local counterfactual explanations.

o Information overload: The primary motivation behind coun-
terfactual analysis is to provide human-intelligible explanations.
With this objective, consider real-world graph datasets that rou-
tinely contain thousands to millions of graphs. Owing to instance-
specific counterfactual explanations, the number of counterfac-
tual graphs grows linearly with the graph dataset size. Conse-
quently, the sheer volume of counterfactual graphs overloads
human cognitive ability to process this information. Hence, the
initial motivation of providing human-intelligible insights is lost
if one does not obtain a holistic view of the counterfactual graphs.

Contributions: In this paper, we study the problem of model-
agnostic, global counterfactual explanations of GNNs for graph
classification. More specifically, given a graph dataset, our goal is
to counterfactually explain the largest number of input graphs with
a small number of counterfactuals. As we will demonstrate later
in our experiments, this formulation naturally forces us to remove
redundancy from instance-specific counterfactual explanations and
hence has higher information density. Algorithmically, the pro-
posed problem introduces new challenges. We theoretically estab-
lish that the proposed problem is NP-hard. Furthermore, the space
of all possible counterfactual graphs itself is exponential. Our work
overcomes these challenges and makes the following contributions:

e Novel formulation: We formulate the novel problem of global
counterfactual reasoning/explanation of GNNs for graph classifi-
cation. In contrast to existing works on counterfactual reasoning
that only generate instance-specific examples, we provide an
explanation on the global behavior of the model.

Algorithm design: While the problem is NP-hard, we propose

GCFEXPLAINER, which organizes the exponential search space as

an edit map. We then perform vertex-reinforced random walks on

it to generate diverse, representative counterfactual candidates,
which are greedily summarized as the global explanation.

e Experiments: We conduct extensive experiments on real-world
datasets to validate the effectiveness of the proposed method.
Results show that GCFEXPLAINER not only provides important
high-level insights on the model behavior but also outperforms
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state-of-the-art baselines related to counterfactual reasoning in
various recourse quality metrics.

2 GLOBAL COUNTERFACTUAL
EXPLANATIONS

This section introduces the global counterfactual explanation (GCE)
problem for graph classification. We start with the background on lo-
cal counterfactual reasoning. Then, we propose a representation of
the global recourse rule that provides a high-level counterfactual un-
derstanding of the classifier behavior. Finally, we introduce quality
measures for recourse rules and formally define the GCE problem.

2.1 Local Counterfactual

Consider a graph G = (V, E), where V and E are the sets of (labelled)
nodes and edges respectively. A (binary) graph classifier (e.g., a
GNN) ¢ classifies G into either the undesired class (¢(G) = 0) or the
desired one (¢(G) = 1). An explanation of ¢ seeks to answer how
these predictions are made. Those based on factual reasoning ana-
lyze what properties G possesses to be classified in the current class
while those based on counterfactual reasoning find what properties
G needs to be assigned to the opposite class.

Existing counterfactual explanation methods take a local perspec-
tive. Specifically, for each input graph G, they find a counterfactual
(graph) C that is somewhat similar to G but is assigned to a different
class. Without loss of generality, let G belong to the undesired class,
ie, #(G) = 0, then the counterfactual C satisfies ¢(C) = 1. The
similarity between C and G is quantified by a predefined distance
metric d, for example, the number of added/removed edges [2, 19].

In our work, we consider the graph edit distance (GED) [33], a
more general distance measure, as the distance function to account
for other types of changes. Specifically, GED(Gj, G2) counts the
minimum number of “edits” to convert G; to Gy. An “edit” can be
the addition or removal of edges and nodes, or change of node
labels (see Figure 2). Moreover, to account for graphs of different
sizes, we normalize the GED by the sizes of graphs: GED(G1,Gy) =
GED(G1,G2)/(|V1| + |V2| + |E1| + |E2|). Nonetheless, our method
can be applied with other graph distance metrics, such as those
based on graph kernels (e.g., RW [4], NSPDG [6], WL [35]).

Node/edge addition
«—>
Node/edge
odeleds I w label change

Figure 2: Edits between graphs.

The distance function measures the quality of the counterfactual
found by the explanation model. Ideally, the counterfactual C should
be very close to the input graph G while belonging to a different
class. Formally, we define the counterfactuals that are within a
certain distance 6 from the input graph as close counterfactuals.

DEFINITION 1 (CLOSE COUNTERFACTUAL). Given the GNN clas-
sifier ¢, distance parameter 0, and an input graph G with undesired



Global Counterfactual Explainer for Graph Neural Networks

outcome, i.e., p(G) = 0; a counterfactual graph, C, is a close counter-
factual of G when ¢(C) = 1 and d(G,C) < 0.

While the (close) counterfactual C found by existing methods
explains the classifier behavior for the corresponding input graph
G, it is hard to generalize to understand the global pattern. Next,
we introduce the global recourse rule that provides a high-level
summary of the classifier behavior across different input graphs.

2.2 Global Recourse Representation

The global counterfactual explanation requires a global recourse
rule r. Specifically, for any (undesired) input graph G with ¢(G) = 0,
r provides a (close) counterfactual (i.e., a recourse) for G: ¢(r(G)) =
1. While both a recourse rule and a local counterfactual explainer
find a counterfactual given an input graph, their goals are different.
The goal of the local counterfactual explainer is to find the best
(closest) counterfactual possible for each input graph, and therefore,
r can be very complicated, e.g., in the form of an optimization
algorithm [2, 36]. On the other hand, a recourse rule aims to provide
an explanation of the classifier’s global behavior, which requires
a simpler form that is understandable for domain experts without
prior knowledge of deep learning on graphs.

Existing global recourse rules for classifiers with feature vectors
as input take the form of short decision trees [31]. However, this is
hard to be generalized to graph data with rich structure information.
Instead, we propose the representation of a global recourse rule for
a graph classifier to be a collection of counterfactual graphs C in the
desired class that are diverse and representative enough to capture its
global behavior. This representation does not require any additional
knowledge for domain experts to understand and draw insights
from, similar to the local counterfactual examples. It is also easy to
find the local counterfactual for a given input graph G based on C
by nominating the closest graph in C: r(G) = argminccc d(G,C).

2.3 Quantifying Recourse Quality

Given a graph classifier ¢ and a set of n input graphs G in the un-

desired class, we want to compare the quality of different recourse

representations C. Similar to the quality metrics introduced for
vector data [31], we aim to account for the following factors:

(1) Coverage: Like local counterfactual explainers, we want to en-
sure that counterfactuals found for individual input graphs are
of high quality. Specifically, we introduce recourse coverage—
the proportion of input graphs that have close counterfactuals
from C under a given distance threshold 6:

coverage(C) = [{G e G| gug {d(G,C)} < 6}|/IG|

(2) Cost: Another quality metric based on local counterfactual
quality is the recourse cost (i.e., the distance between the input
graph and its counterfactual) across the input graphs:

cost(C) = 2%% {rcneig{d(G, O)}}

where agg is an aggregation function, e.g., mean or median.

(3) Interpretability: Finally, the recourse rule should be easy
(small) enough for human cognition. We quantify the inter-
pretability as the size of recourse representation:

size(C) = |C|
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2.4 Problem Formulation and Characterization

An ideal recourse representation should maximize the coverage
while minimizing the cost and the size. Formally, we define the
global counterfactual explanation problem as follows:

PROBLEM 1 (GLOBAL COUNTERFACTUAL EXPLANATION FOR GRAPH
CrassIFICATION (GCE)). Given a GNN graph classifier ¢ that clas-
sifies n input graphs G to the undesired class 0 and a budget k < n,
our goal is to find the best recourse representation C that maximizes
the recourse coverage with size k:

mcax coverage(C) s.t. size(C) =k

We note that in our problem formulation only coverage and size
are explicitly accounted for, whereas cost is absent. We make this
design choice since cost and coverage are intrinsically opposing
forces. Specifically, if we are willing to allow a high cost, coverage
increases since we allow for higher individual distances between an
input graph and its counterfactual. Therefore, we take the approach
of binding the cost to the distance threshold 6 in the coverage defini-
tion. Nonetheless, an explicit analysis of all these metrics including
cost is performed to quantify recourse quality during our empirical
evaluation in Section 4. Below we discuss the hardness of GCE.

THEOREM 1 (NP-HARDNESS). The GCE problem is NP-hard.

Proor. To establish NP-hardness of the proposed problem we
reduce it from the classical Maximum Coverage problem.

DEFINITION 2 (MAxIMUM COVERAGE). Given a budget k and
a collection of subsets S = {S1,--+,Sm} from a universe of items
U ={u, - ,un}, find a subset S’ C S of sets such that |S’| < k
and the number of covered elements | Uys, s’ Sil is maximized.

We show that given any instance of a maximum coverage prob-
lem (S, U), it can be mapped to a GCE problem. For u;, we construct
a star graph with a center node with an empty label and n leaf nodes
with n — 1 empty labels and one label u;. For S;, we construct a
similar star graph with a center node with a special label y and
n leaf nodes with |S;| labeled with the elements in S; and n — |S;|
with empty labels. The classifier ¢ classifies a graph as a desired
one if and only if it is a star graph with a y-labeled central node
and n leaf nodes with a set of labels among S = {S1,---, S, }. The
allowed edit operations are either adding or deleting a set of labels
(as a single edit), but not both together. So, each S; corresponds to
a counterfactual candidate C; and d(Gj,C;) < 0 = 1if and only if
uj € S;. With this construction, it is easy to see that an optimal
solution for this instance of GCE is the optimal solution for the
corresponding instance of the maximum coverage problem. O

Owing to NP-hardness, it is not feasible to identify the optimal
solution for the GCE problem in polynomial time unless NP = P.
In the next section, we will introduce GCFEXPLAINER, an effective
and efficient heuristic that solves the GCE problem.

3 PROPOSED METHOD: GCFEXPLAINER

In this section, we propose GCFEXPLAINER, the first global counter-
factual explainer for graph classification. The GCE problem requires
us to find a collection of k counterfactual graphs that maximize the
coverage of the input graphs. Intuitively, we want each individual
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counterfactual graph to be a close counterfactual to (i.e., “cover”) as
many input graphs as possible. Additionally, different counterfac-
tual graphs should cover different sets of input graphs to maximize
the overall coverage. These intuitions motivate the design of our
algorithm GCFEXPLAINER, which has three major components:

(1) Structuring the search space: The search space of counterfac-
tual graphs consists of all graphs that are in the same domain
as the input graphs and within a distance of 6. In other words,
any graph within a distance of 6 from an input graph may be
a potential counterfactual candidate and therefore needs to be
analyzed. The number of potential graphs within 0 increases
exponentially with 6 since the space of graph edits is combi-
natorial [18, 30]. GCFEXPLAINER uses an edit map to organize
these graphs as a meta-graph G, where individual nodes are
graphs that are created via a different number of edits from the
input graphs and each edge represents a single edit.
Vertex-reinforced random walk: To search for good counter-
factual candidates, GCFEXPLAINER leverages vertex-reinforced
random walks (VRRW) [28] on the edit map G. VRRW has the
nice property of converging to a set of nodes that are both
important (i.e., cover many input graphs) and diverse (i.e., non-
overlapping coverage), which will form a small set of counter-
factual candidates for further processing.

Iterative computation of the summary: After obtaining
good counterfactual candidates from VRRW, GCFEXPLAINER
creates the final set of the counterfactual graphs (i.e., the sum-
mary) as the recourse representation by iteratively adding the
best candidate based on the maximal gain of the coverage given
the already added candidates.

—
Y
~

3.1 Structuring the Search Space

The search space for counterfactual graphs in GCFEXPLAINER is
organized via an edit map G. The edit map is a meta-graph whose
nodes are graphs in the same domain as the input graphs and edges
connect graphs that differ by a single graph edit. As an example,
each graph in Figure 2 represents a node in the edit map, and the
arrows denote edges between graphs (nodes) that are one edit away.
In the edit map, we only include connected graphs since real graphs
of interest are often connected (e.g., molecules, proteins, etc.).
While all potential counterfactual candidates are included as
its nodes, the edit map has an exponential size and it is computa-
tionally prohibitive to fully explore it. However, a key observation
is that a counterfactual candidate can only be a few hops away
from some input graph. Otherwise, the graph distance between the
counterfactual and the input graph would be too large for the coun-
terfactual to cover it. This observation motivates our exploration of
the edit map to be focused on the union of close neighborhoods of
the input graphs (see Section 3.2.3). Additionally, while we cannot
compute the entire edit map, it is easy to chart the close neighbor-
hoods by iteratively performing all possible edits from the input
graphs. Next, we introduce the vertex-reinforced random walk to
efficiently explore the edit map to find counterfactual candidates.

3.2 Vertex-Reinforced Random Walk

Vertex-reinforced random walk (VRRW) [28] is a time-variant
random walk. Different from other more widely applied random
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walk processes such as the simple random walk and the PageRank
[10, 11, 16, 29], the transition probability p(u,v) of VRRW from
node u to node v depends not only on the edge weight w(u, v) but
also the number of previous visits in the walk to the target node v,
which we denote using N (v). Specifically,

p(u,0) o< w(u,0)N(0) 1)

GCFEXPLAINER applies VRRW on the edit map and produces n
most frequently visited nodes in the walk as the set of counterfactual
candidates S. Next, we formalize VRRW in our setting and explain
how it surfaces good counterfactual candidates for GCE.

3.2.1  Vertex-reinforcement. Our main motivation for using VRRW
to explore the edit map instead of other random walk processes
is that VRRW converges to a diverse and representative set of
nodes [23, 26] in different regions of the edit map. In this way, the
frequently visited nodes in instances of VRRW have the potential
to be good counterfactual candidates as they would cover a diverse
set of input graphs in the edit map. The reason behind the diversity
of the highly visited nodes is the previous visit count N(v) in the
transition probability. Specifically, nodes with larger visit counts
tend to be visited more often later (“richer gets richer”), and thereby
dominating all other nodes in their neighborhood. This leads to a
bunch of highly visited nodes to “represent” each region of the edit
map. We refer the readers to [23] for details on the mathematical
basis and the theoretical correctness of this property. Moreover, as
our goal is to find counterfactual candidates, we only reinforce (i.e.,
increase the visit counts of) graphs in the counterfactual class.

3.2.2  Importance function. While the vertex-reinforcement mech-
anism ensures diversity of the highly visited nodes, we still need
to guide the walker to visit graphs that are good counterfactual
candidates. We achieve this by assigning large edge weight w(u, v)
to good counterfactual candidates via an importance function I(v):

w(u,v) =I(v) (2)

The importance function I(v) should capture the quality of a graph
v as a counterfactual candidate. It has the following components:
(1) Counterfactual probability p (v). The graph classifier ¢ predicts
a probability for v to be in the counterfactual class (¢(v) = 1).
By using it as part of the importance function, the walker is
encouraged to visit regions with rich counterfactual graphs.
Individual coverage coverage({v}). The individual coverage
of a graph v computes the proportion of input graphs that are
close to v. This encourages the walker to visit graphs that cover
a large number of input graphs.

Gain of coverage gain(v; S). Given a graph v and the current
set of counterfactual candidates S (i.e., the n most frequently
visited nodes), we can compute the gain between the current
coverage and the coverage after adding v to S:

@

~

3

~

gain(v; S) = coverage(S U {v}) — coverage(S)

This guides the walker to find graphs that complement the cur-
rent counterfactual candidates to cover additional input graphs.
The importance function is a combination of these components:

I(v) = pg(v) (e coverage({v}) + (1 - @) gain(v; S)) (3)

where « is a hyperparameter between 0 and 1. With the above
importance function, the VRRW in GCFEXPLAINER converges to a
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set of diverse nodes that have high counterfactual probability and
collectively cover a large number of input graphs.

3.2.3 Dynamic teleportation. The last component of VRRW, tele-
portation, is to help us manage the exponential search space of the
edit map. Since our goal is to find close counterfactuals to the input
graphs, the walker only needs to explore the nearby regions of the
input graphs. Therefore, we start the walk from the input graphs,
and also at each step, let the walker teleport back (i.e. transit) to a
random input graph with probability 7.

To decide which input graph to teleport to, we adopt a dynamic
probability distribution based on the current counterfactual candi-
date set S. Specifically, let g(G) = [{v € S | d(v,G) < 0 and ¢(v) =
1}| be the number of close counterfactuals in S covering an input
graph G. Then the probability to teleport to G is

exp(-9(G))
2.6'eG exp(—9(G”))

pe(G) = 4

This dynamic teleportation favors input graphs that are not well
covered by the current solution set and encourages the walker to
explore nearby counterfactuals to cover them after teleportation.

3.3 Iterative Computation of the Summary

We have applied VRRW to generate a good set of n counterfac-
tual candidates S. In the last step of GCFEXPLAINER, we aim to
further refine the candidate set and create the final recourse rep-
resentation (i.e., the summary) with k counterfactual graphs. This
summarization problem is also NP-hard and we propose to build C
in an iterative and greedy manner from S.

Specifically, we start with an empty solution set Cy. Then, for
each iteration t, we add the graph v to C; with the maximal gain
of coverage gain(v; C;). This is repeated k times to get the final
recourse representation C with k graphs. It is easy to show that the
summarization problem is submodular and therefore, our greedy
algorithm provides (1 — 1/e)-approximation.

Notice that the greedy algorithm can also be applied to the
local counterfactuals found by existing methods to generate a GCE
solution. Here, we highlight three advantages of GCFEXPLAINER:
(1) Existing local counterfactual explainers [1, 2, 19, 36] are only

able to generate counterfactuals based on one type of graph
edits—edge removal, while GCFEXPLAINER incorporates all types
of edits to include a richer set of counterfactual candidates.

(2) The set of counterfactual candidates from GCFEXPLAINER is
generated with the GCE objective in mind, while the local coun-
terfactuals from existing methods are optimized for individual
input graphs. Therefore, they may not be good candidates to
capture the global behavior of the classifier.

(3) It is easy to incorporate domain constraints (e.g., the valence
of chemical bonds) into GCFEXPLAINER by pruning the neigh-
borhood of the edit map, while existing methods based on opti-
mization require non-trivial efforts to customize.

We will empirically demonstrate the superiority of GCFEXPLAINER

to this two-stage approach with state-of-the-art local counterfactual

explanation methods in our experiments in Section 4.2.
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Algorithm 1 GCFEXPLAINER(§, G)

1: G « random input graph from G, N(G) « 1, S = {G}
2: forie1l: Mdo
3:  Lete ~ Bernoulli(t)

4 if € = 0 then

5 for v € Neighbors(G) do

6: Compute I(v) based on Equation 3

7 Compute p(G, v) based on Equation 1

8 v « random neighbor of G based on p (G, v)
9: else

v « random input graph from G based on Equation 4
11:  if ¢(v) =1 then
12: if v € S then
13: N(v) « N(v)+1
14: else
15: S« S+{v},N(v) « 1
16: Ge—vu
17: S « top n frequently visited counterfactuals in S
18: C— 0

19: fort € 1: k do

20: U ¢ argmax,.g gain(o;C)
21: C«CH+{v}

22: return C

Pseudocode and complexity: The pseudocode of GCFEXPLAINER
is presented in Algorithm 1. Line 1-16 summarizes the VRRW com-
ponent of GCFEXPLAINER. Specifically, Line 3-10 determines the
next graph to visit based on VRRW transition probabilities and
dynamic teleportation, and Line 11-16 update the visit counts and
the set of counterfactual candidates. The iterative computation of
the counterfactual summary is described in Line 17-21. The overall
complexity of GCFEXPLAINER is O(Mhn +kn), where M is the num-
ber of iterations for the VRRW, h is the average node degree in the
meta-graph, n is the number of input graphs, and k is the size of
the global counterfactual representation. In practice, we store the
computed transition probabilities with a space-saving algorithm
[24] to improve the running time of GCFEXPLAINER.

4 EXPERIMENTS

We provide empirical results for the proposed GCFExplanier along
with baselines on commonly used graph classification datasets. Our
code is available at https://github.com/mertkosan/GCFExplainer.

Table 1: The statistics of the datasets.

NCI1 Mutagenicity AIDS Proteins
#Graphs 3978 4308 1837 1113
#Nodes 118714 130719 28905 43471
#Edges 128663 132707 29985 81044
#Node Labels 10 10 9 3

4.1 Experimental Settings

4.1.1 Datasets. We use four different real-world datasets for graph
classification benchmark with their statistics in Table 1. Specifically,
NCI1 [41], Mutagenicity [13, 32], and AIDS [32] are collections
of molecules with nodes representing different atoms and edges
representing chemical bonds between them. The molecules are
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Table 2: Recourse coverage (9 = 0.1) and median recourse cost comparison between GCFEXPLAINER and baselines for a 10-graph
global explanation. GCFEXPLAINER consistently and significantly outperforms all baselines across different datasets.

NCI1 Mutagenicity AIDS Proteins
Coverage  Cost  Coverage Cost Coverage Cost Coverage  Cost
GROUND-TRUTH 16.54% 0.1326 28.96% 0.1275 0.41% 0.2012 8.47% 0.2155
RCEXPLAINER 15.22% 0.1370 31.99% 0.1290 8.96% 0.1531 8.74% 0.2283
CFF 17.61% 0.1331 30.43% 0.1327 3.39% 0.1669 3.83% 0.2557
GCFEXPLAINER 27.85%  0.1281 37.08%  0.1135 14.66%  0.1516 10.93%  0.1856
NCI1 Mutagenicity AIDS Proteins
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Figure 3: Coverage and cost performance comparison between GCFEXPLAINER and baselines based on different counterfactual
summary sizes. GCFEXPLAINER consistently outperforms the baselines across different sizes.

classified by whether they are anticancer, mutagenic, and active
against HIV, respectively. Proteins [5, 7] is a collection of proteins
classified into enzymes and non-enzymes, with nodes representing
secondary structure elements and edges representing structural
proximity. For all datasets, we filter out graphs containing rare
nodes with label frequencies smaller than 50.

4.1.2  Graph classifier. We follow [40] and train a GNN with 3 con-
volution layers [15] of embedding dimension 20, a max pooling
layer, and a fully connected layer for classification. The model is
trained with the Adam optimizer [14] and a learning rate of 0.001
for 1000 epochs. The datasets are split into 80%/10%/10% for train-
ing/validation/testing with the model accuracy shown in Table 3.

Table 3: Accuracy of the GNN graph classifier.

NCI1 Mutagenicity AIDS Proteins
Training  0.8439 0.8825 0.9980 0.7800
Validation 0.8161 0.8302 0.9727  0.8198
Testing 0.7809 0.8000 0.9781 0.7297

4.1.3 Baselines. To the best of our knowledge, GCFEXPLAINER is
the first global counterfactual explainer. To validate its effective-
ness, we compare it against state-of-the-art local counterfactual
explainers combined with the greedy summarization algorithm de-
scribed in Section 3.3. The following local counterfactual generation
methods are included in our experiments.

o GrouND-TRuTH: Using graphs belonging to the desired class

from the original dataset as local counterfactuals.

e RCEXPLAINER [2]: Local counterfactual explainer based on the
modeling of implicit decision regions of GNNs.

o CFF [36]: Local counterfactual explainer based on joint modeling
of factual and counterfactual reasoning.

4.1.4  Explainer settings. We use a distance threshold 6 of 0.05 for
training all explainers. Since computing the exact graph edit dis-
tance is NP-hard, we apply a state-of-the-art neural approximation
algorithm [30]. For GCFEXPLAINER, we set the teleportation proba-
bility 7 = 0.1 and tune «, the weight between individual coverage
and gain of coverage, from {0, 0.5, 1}. A sensitivity analysis is pre-
sented in Section 4.6. The number of VRRW iterations M is set to
50000, which is enough for convergence as shown in Section 4.5
For baselines, we tune their hyperparameters to achieve the best
local counterfactual rates while maintaining an average distance to
input graphs that is smaller than the distance threshold 6.

4.2 Recourse Quality

We start by comparing the recourse quality between GCFEXPLAINER
and baselines. Table 2 shows the recourse coverage with 6 = 0.1 and
median recourse cost of the top 10 counterfactual graphs (i.e., k =
10). We first notice that the two state-of-the-art local counterfactual
explainers have similar performance as GROUND-TRUTH, consistent
with our claim that local counterfactual examples from existing
methods are not good candidates for a global explanation. The
proposed GCFEXPLAINER, on the other hand, achieves significantly
better performance for global recourse quality. Compared to the
best baseline, RCExPLAINER, GCFEXPLAINER realizes a 46.9% gain
in recourse coverage and a 9.5% reduction in recourse cost.
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Figure 4: Recourse coverage comparison between GCFEXPLAINER and baselines based on different distance threshold values ().
GCFEXPLAINER consistently outperforms the baselines across different 6.

Next, we show the recourse coverage and cost for different sizes
of counterfactual summary in Figure 3. As expected, adding more
graphs to the recourse representation increases recourse coverage
while decreasing recourse cost, at the cost of interpretability. And
GCFEXPLAINER maintains a constant edge over the baselines.

We also compare the recourse coverage based on different dis-
tance thresholds 0, with results shown in Figure 4. While coverage
increases for all methods as the threshold increases, GCFEXPLAINER
consistently outperforms the baselines across different sizes.

4.3 Global Counterfactual Insight

We have demonstrated the superiority of GCFEXPLAINER based on
various quality metrics for global recourse. Here, we show how
GCFEXPLAINER provides global insights compared to local counter-
factual examples. Figure 5 illustrates (a) four input undesired graphs
with a similar structure from the AIDS dataset, (b) corresponding
local counterfactual examples (based on RCExpLAINER and CFF),
and (c) the representative global counterfactual graph from GCFEx-
PLAINER covering the input graphs. Our goal is to understand why
the input graphs are inactive against AIDS (undesired) and how to
obtain the desired property with minimal changes.

The local counterfactuals in (b) attribute the classification re-
sults to different edges in individual graphs (shown as red dotted
lines) and recommend their removal to make input graphs active
against HIV. Note that while only two edits are proposed for each
individual graph, they appear at different locations, which are hard
to generalize for a global view of the model behavior. In contrast,
the global counterfactual graph from GCFEXPLAINER presents a
high-level recourse rule. Specifically, the carbon atom with the
carbon-oxygen bond is connected to two other carbon atoms in the
input graphs, making them ketones (with a C=0 bond) or ethers
(with a C-O bond). On the other hand, the global counterfactual
graph highlights a different functional group, aldehyde (shown in
blue), to be the key for combating AIDS. In aldehydes, the carbon
atom with a carbon-oxygen bond is only connected to one other
carbon atom, leading to different chemical properties compared
to ketones and ethers. Indeed, aldehydes have been shown to be
effective HIV protease inhibitors [34].

Finally, this case study also demonstrates that counterfactual
candidates found by GCFEXPLAINER are better for global expla-
nation than local counterfactuals. We note that while the graph
edit distance between the local counterfactuals and their corre-
sponding input graphs is only 2, they do not cover other similarly
structured input graphs (with distance > 5). Meanwhile, our global
counterfactual graph covers all input graphs (with distance < 4).
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Figure 5: Illustration of global and local counterfactual ex-
planations for the AIDS dataset. The global counterfactual
graph (c) presents a high-level recourse rule—changing ke-
tones and ethers into aldehydes (shown in blue)—to combat
HIV, while the edge removals (shown in red) recommended
by local counterfactual examples (b) are hard to generalize.

4.4 Ablation Study

We then conduct an ablation study to investigate the effectiveness
of GCFEXPLAINER components. We consider three alternatives:

e GCFEXPLAINER-NVR: no vertex-reinforcement (N (v) = 1)

e GCFExpLAINER-NIF: no importance function (I(v) = 1)

o GCFExXPLAINER-NDT: no dynamic teleportation (p,(G) = 1/|G|)
The coverage results are shown in Table 4. We observe decreased
performance when any of GCFEXPLAINER components is absent.

Table 4: Ablation study results based on recourse coverage.

NCI1 Mutagenicity AIDS Proteins
GCFExPLAINER-NVR  24.56% 35.44% 11.33% 8.56%
GCFExPLAINER-NIF  13.29% 29.16% 4.54% 6.83%
GCFEXPLAINER-NDT  27.34% 36.35% 14.05% 9.28%
GCFEXPLAINER 27.85% 37.08% 14.66% 10.93%
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4.5 Convergence Analysis

In this subsection, we show the empirical convergence of VRRW
based on the mutagenicity dataset in Figure 6. We observe that
the coverage performance for different summary sizes starts to
converge after 15000 iterations and fully converges after 50000
iterations, which is the number we applied in our experiments.
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Figure 6: Convergence of VRRW for the mutagenicity dataset
based on recourse coverage with different summary sizes.
VRRW fully converges after M = 50000 iterations.

4.6 Sensitivity Analysis

The only hyperparameter of GCFEXPLAINER we tune is « in Equa-
tion 3 that weights the individual coverage and gain of coverage
for the importance function. Table 5 shows the results based on
different «. While GCFExPLAINER outperforms baselines with all dif-
ferent a, we observe that individual coverage works better for NCI1
and gain of cumulative coverage works better for other datasets.

Table 5: Sensitivity analysis on a, the weight between individ-
ual coverage and gain of coverage in the importance function.

NCI1 Mutagenicity AIDS Proteins
a=0.0 27.85% 36.87% 12.83% 10.11%
a=0.5 27.50% 36.59% 14.66% 10.38%
a=10 22.27% 37.08% 13.99% 10.93%

4.7 Running Time

Table 6 summarizes the running times of generating counterfactual
candidates based on different methods. GCFEXPLAINER has a com-
petitive running time albeit exploring more counterfactual graphs
in the process. We also include results for GCFEXPLAINER-S which
samples a maximum of 10000 neighbors for computing the impor-
tance at each step. It achieves better running time at a negligible
cost of 3.3% performance loss on average. Finally, summarizing the
counterfactual candidates takes less than a second for all methods.

5 RELATED WORK

Explanations for Graph Neural Networks. There is much re-
search [20, 40, 46, 47] on explaining graph neural networks (GNNs).
The first proposed method, GNNExplainer [46], finds the explana-
tory subgraph and sub-features by maximizing the mutual infor-
mation between the original prediction and the prediction based
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Table 6: Counterfactual candidates generation time compari-
son. GCFEXPLAINER (-S) has competitive running time albeit
exploring more counterfactual graphs.

NCI1 Mutagenicity AIDS Proteins
RCEXPLAINER 30454 52549 29047 8444
CFF 22794 31749 21296 6412
GCFEXPLAINER 19817 24006 2615 19246
GCFEXPLAINER-S 19365 18798 2539 7429

on the subgraph and sub-features. Later, PGExplainer [20] provides
an inductive framework that extracts GNN node embeddings and
learns to map embedding pairs to the probability of edge existence
in the explanatory weighted subgraph. PGMExplainer [40] builds
a probabilistic explanation model that learns new predictions from
perturbed node features, performs variable selection using Markov
blanket of variables, and then produces a Bayesian network via
structure learning. In XGNN [47], the authors find model-level ex-
planations by a graph generation module that outputs a sequence
of edges using reinforcement learning. These explanation methods
focus on factual reasoning while the goal of our work is to provide
a global counterfactual explanation for GNNs.

Counterfactual Explanations. Recently, there are several at-
tempts to have explanations of graph neural networks (GNNs) via
counterfactual reasoning [1, 2, 19, 36]. One of the earlier methods,
CF-GNNExplainer [19], provides counterfactual explanations in
terms of a learnable perturbed adjacency matrix that leads to the
flipping of classifier prediction for a node. On the other hand, RC-
Explainer [2] aims to find a robust subset of edges whose removal
changes the prediction of the remaining graph by modeling the
implicit decision regions based on GNN graph embeddings. In [1],
the authors investigate counterfactual explanations for a more spe-
cific class of graphs—the brain networks—that share the same set of
nodes by greedily adding or removing edges using a heuristic. More
recently, the authors of CFF [36] argue that a good explanation for
GNNs should consider both factual and counterfactual reasoning
and they explicitly incorporate those objective functions when
searching for the best explanatory subgraphs and sub-features.
Counterfactual reasoning has also been applied for link prediction
[48]. All the above methods produce local counterfactual examples
while our work aims to provide a global explanation in terms of a
summary of representative counterfactual graphs.

6 CONCLUSION

We have proposed GCFEXPLAINER, the first global counterfactual
explainer for graph classification. Compared to local explainers,
GCFEXPLAINER provides a high-level picture of the model behavior
and effective global recourse rules. We hope that our work will
not only deepen our understanding of graph neural networks but
also build a bridge for experts from other domains to leverage deep
learning models for high-stakes decision-making.

ACKNOWLEDGMENTS

This work is partially funded by NSF via grant IIS 1817046. The au-
thors thank Sevgi Kosan and Ilhan Kosan for their helpful comments
on the chemical properties in the global counterfactual analysis.



Global Counterfactual Explainer for Graph Neural Networks

REFERENCES

(1]

[2

—

(3]

=

[10]

(11

[12]

[13

[14]

[15

[16]

[17]

(18]

=
L

[20]

[21

[22

[23

[24]

[25

Carlo Abrate and Francesco Bonchi. 2021. Counterfactual graphs for explainable
classification of brain networks. In SIGKDD.

Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam,
and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph Neural
Networks. In NeurIPS.

Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. 2022. Learning Articulated
Rigid Body Dynamics with Lagrangian Graph Neural Network. In NeurIPS.
Karsten Borgwardt, Nicol Schraudolph, and SVN Vishwanathan. 2006. Fast
computation of graph kernels. In NeurIPS.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schénauer, SVN Vishwanathan,
Alex ] Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47-156.

Fabrizio Costa and Kurt De Grave. 2010. Fast neighborhood subgraph pairwise
distance kernel. In ICML.

Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771-783.

Shubham Gupta, Sahil Manchanda, Srikanta Bedathur, and Sayan Ranu. 2022.
TIGGER: Scalable Generative Modelling for Temporal Interaction Graphs. In
AAAL

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

Zexi Huang, Arlei Silva, and Ambuj Singh. 2021. A broader picture of random-
walk based graph embedding. In SIGKDD.

Zexi Huang, Arlei Silva, and Ambuj Singh. 2022. POLE: Polarized Embedding for
Signed Networks. In WSDM.

Mingjian Jiang, Zhen Li, Shugang Zhang, Shuang Wang, Xiaofeng Wang, Qing
Yuan, and Zhiqiang Wei. 2020. Drug-target affinity prediction using graph neural
network and contact maps. RSC advances 10, 35 (2020), 20701-20712.

Jeroen Kazius, Ross McGuire, and Roberta Bursi. 2005. Derivation and validation
of toxicophores for mutagenicity prediction. Journal of medicinal chemistry 48, 1
(2005), 312-320

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. In
ICLR.

Mert Kosan, Arlei Silva, Sourav Medya, Brian Uzzi, and Ambuj Singh. 2021. Event
detection on dynamic graphs. arXiv preprint arXiv:2110.12148 (2021).

Yongjiang Liang and Peixiang Zhao. 2017. Similarity Search in Graph Databases:
A Multi-Layered Indexing Approach. In ICDE. 783-794.

Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio
Silvestri. 2022. Cf-gnnexplainer: Counterfactual explanations for graph neural
networks. In AISTATS.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. 2020. Parameterized explainer for graph neural network.
In NeurIPS.

Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu,
and Ambuj Singh. 2020. Gcomb: Learning budget-constrained combinatorial
algorithms over billion-sized graphs. In NeurIPS.

Sourav Medya, Mohammad Rasoolinejad, Yang Yang, and Brian Uzzi. 2022. An
Exploratory Study of Stock Price Movements from Earnings Calls. In WebConf.
Qiaozhu Mei, Jian Guo, and Dragomir Radev. 2010. Divrank: the interplay of
prestige and diversity in information networks. In SIGKDD.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient com-
putation of frequent and top-k elements in data streams. In ICDT.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe W. ]. Jiang, Ebrahim M.
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin
Bae, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre

149

™
oY

&
=

[33

[34

(35]

(37

[38

[39

[40]

[41

[43

[44]

[45

[46

N
=

(48

WSDM °23, February 27-March 3, 2023, Singapore, Singapore

Tuncer, Anand Babu, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter,
and Jeff Dean. 2020. Chip Placement with Deep Reinforcement Learning. CoRR
abs/2004.10746 (2020).

Dheepikaa Natarajan and Sayan Ranu. 2016. A scalable and generic framework
to mine top-k representative subgraph patterns. In ICDM.

Sunil Nishad, Shubhangi Agarwal, Arnab Bhattacharya, and Sayan Ranu. 2021.
GraphReach: Position-Aware Graph Neural Network using Reachability Estima-
tions. In IJCAL

Robin Pemantle. 1992. Vertex-reinforced random walk. Probability Theory and
Related Fields 92, 1 (1992), 117-136.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In SIGKDD.

Rishab Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakravarthy,
Yogish Sabharwal, and Sayan Ranu. 2022. GREED: A Neural Framework for

Learning Graph Distance Functions. In NeurIPS.
Kaivalya Rawal and Himabindu Lakkaraju. 2020. Beyond individualized recourse:

Interpretable and interactive summaries of actionable recourses. In NeurIPS.
Kaspar Riesen and Horst Bunke. 2008. IAM graph database repository for graph
based pattern recognition and machine learning. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Springer, 287-297.

Alberto Sanfeliu and King-Sun Fu. 1983. A distance measure between attributed
relational graphs for pattern recognition. IEEE transactions on systems, man, and
cybernetics 3 (1983), 353-362.

Edoardo Sarubbi, Pier Fausto Seneci, Michael R Angelastro, Norton P Peet, Mau-
rizio Denaro, and Khalid Islam. 1993. Peptide aldehydes as inhibitors of HIV
protease. FEBS letters 319, 3 (1993), 253-256.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. JMLR 12, 9
(2011).

Juntao Tan, Shijie Geng, Zuohui Fu, Yinggiang Ge, Shuyuan Xu, Yungqi Li, and
Yongfeng Zhang. 2022. Learning and evaluating graph neural network explana-
tions based on counterfactual and factual reasoning. In WebConf.

Abishek Thangamuthu, Gunjan Kumar, Suresh Bishnoi, Ravinder Bhattoo,
N M Anoop Krishnan, and Sayan Ranu. 2022. Unravelling the Performance
of Physics-informed Graph Neural Networks for Dynamical Systems. In NeurIPS.
Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10-5555.

Minh Vu and My T Thai. 2020. Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks. In NeurIPS.

Nikil Wale and George Karypis. 2006. Comparison of Descriptor Spaces for
Chemical Compound Retrieval and Classification. In ICDM.

Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: accelerating quantized
graph neural networks via GPU tensor core. In PPoPP.

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei
Ding. 2021. GNNAdvisor: An Efficient Runtime System for GNN Acceleration on
GPUs. In OSDL

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue
Zheng. 2021. Graph neural networks for automated de novo drug design. Drug
Discovery Today 26, 6 (2021), 1382-1393.

Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng,
and Hongyuan Zha. 2011. Like like alike: joint friendship and interest propagation
in social networks. In WebConf.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
Gnnexplainer: Generating explanations for graph neural networks. In NeurIPS.
Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-
Level Explanations of Graph Neural Networks. In SIGKDD.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. 2022. Learning
from Counterfactual Links for Link Prediction. In ICML.



	Abstract
	1 Introduction
	2 Global Counterfactual Explanations 
	2.1 Local Counterfactual
	2.2 Global Recourse Representation
	2.3 Quantifying Recourse Quality
	2.4 Problem Formulation and Characterization

	3 Proposed Method: GCFExplainer
	3.1 Structuring the Search Space
	3.2 Vertex-Reinforced Random Walk
	3.3 Iterative Computation of the Summary

	4 Experiments
	4.1 Experimental Settings
	4.2 Recourse Quality
	4.3 Global Counterfactual Insight
	4.4 Ablation Study
	4.5 Convergence Analysis
	4.6 Sensitivity Analysis
	4.7 Running Time

	5 Related Work
	6 Conclusion
	Acknowledgments
	References



